301 research outputs found

    Recurring patterns in stationary intervals of abdominal uterine electromyograms during gestation

    Get PDF
    Abdominal uterine electromyograms (uEMG) studies have focused on uterine contractions to describe the evolution of uterine activity and preterm birth (PTB) prediction. Stationary, non-contracting uEMG has not been studied. The aim of the study was to investigate the recurring patterns in stationary uEMG, their relationship with gestation age and PTB, and PTB predictivity. A public database of 300 (38 PTB) three-channel (S1-S3) uEMG recordings of 30 min, collected between 22 and 35 weeks' gestation, was used. Motion and labour contraction-free intervals in uEMG were identified as 5-min weak-sense stationarity intervals in 268 (34 PTB) recordings. Sample entropy (SampEn), percentage recurrence (PR), percentage determinism (PD), entropy (ER), and maximum length (L MAX) of recurrence were calculated and analysed according to the time to delivery and PTB. Random time series were generated by random shuffle (RS) of actual data. Recurrence was present in actual data (p<0.001) but not RS. In S3, PR (p<0.005), PD (p<0.01), ER (p<0.005), and L MAX (p<0.05) were higher, and SampEn lower (p<0.005) in PTB. Recurrence indices increased (all p<0.001) and SampEn decreased (p<0.01) with decreasing time to delivery, suggesting increasingly regular and recurring patterns with gestation progression. All indices predicted PTB with AUC≥0.62 (p<0.05). Recurring patterns in stationary non-contracting uEMG were associated with time to delivery but were relatively poor predictors of PTB

    Gender-specific associations of short sleep duration with prevalent and incident hypertension : the Whitehall II Study

    Get PDF
    Sleep deprivation (5 hour per night) was associated with a higher risk of hypertension in middle-aged American adults but not among older individuals. However, the outcome was based on self-reported diagnosis of incident hypertension, and no gender-specific analyses were included. We examined cross-sectional and prospective associations of sleep duration with prevalent and incident hypertension in a cohort of 10 308 British civil servants aged 35 to 55 years at baseline (phase 1: 1985-1988). Data were gathered from phase 5 (1997-1999) and phase 7 (2003-2004). Sleep duration and other covariates were assessed at phase 5. At both examinations, hypertension was defined as blood pressure 140/90 mm Hg or regular use of antihypertensive medications. In cross-sectional analyses at phase 5 (n5766), short duration of sleep (5 hour per night) was associated with higher risk of hypertension compared with the group sleeping 7 hours, among women (odds ratio: 2.01; 95% CI: 1.13 to 3.58), independent of confounders, with an inverse linear trend across decreasing hours of sleep (P0.003). No association was detected in men. In prospective analyses (mean follow-up: 5 years), the cumulative incidence of hypertension was 20.0% (n740) among 3691 normotensive individuals at phase 5. In women, short duration of sleep was associated with a higher risk of hypertension in a reduced model (age and employment) (6 hours per night: odds ratio: 1.56 [95% CI: 1.07 to 2.27]; 5 hour per night: odds ratio: 1.94 [95% CI: 1.08 to 3.50] versus 7 hours). The associations were attenuated after accounting for cardiovascular risk factors and psychiatric comorbidities (odds ratio: 1.42 [95% CI: 0.94 to 2.16]; odds ratio: 1.31 [95% CI: 0.65 to 2.63], respectively). Sleep deprivation may produce detrimental cardiovascular effects among women. (Hypertension. 2007;50:694-701.) Key Words: sleep duration blood pressure hypertension gender differences confounders comorbiditie

    DNA polymorphism underlying allozyme variation at a malic enzyme locus (mMEP-2*) in Atlantic salmon (Salmo salar L.)

    Get PDF
    A non-synonymous single nucleotide polymorphism (SNP) underlies a diallelic allozyme polymorphism at the mitochondrial NADP-dependent mMEP-2* locus in Atlantic salmon (\textit{Salmo salar} L.). The resultant amino acid substitution, which alters the charge of the allelic products, matches the differential mobility of the two allozyme alleles, while allozyme and SNP assays revealed genotyping concordance in 257 of 258 individuals. A single mismatch, homozygous allozyme vs heterozygote SNP, suggests the presence of a second, less common null allele

    Signaling and structures underpinning conducted vasodilation in human and porcine intramyocardial coronary arteries

    Get PDF
    BACKGROUND: Adequate blood flow into coronary micro-arteries is essential for myocardial function. Here we assess the mechanisms responsible for amplifying blood flow into myogenically-contracting human and porcine intramyocardial micro-arteries ex vivo using endothelium-dependent and -independent vasodilators. METHODS: Human and porcine atrial and ventricular small intramyocardial coronary arteries (IMCAs) were studied with pressure myography and imaged using confocal microscopy and serial section/3-D reconstruction EM. RESULTS: 3D rendered ultrastructure images of human right atrial (RA-) IMCAs revealed extensive homo-and hetero-cellular contacts, including to longitudinally-arranged smooth muscle cells (l-SMCs) found between the endothelial cells (ECs) and radially-arranged medial SMCs (r-SMCs). Local and conducted vasodilatation followed focal application of bradykinin in both human and porcine RA-IMCAs, and relied on hyperpolarization of SMCs, but not nitric oxide. Bradykinin initiated asynchronous oscillations in endothelial cell Ca(2+) in pressurized RA-IMCAs and, as previously shown in human RA-IMCAs, hyperpolarized porcine arteries. Immunolabelling showed small- and intermediate-conductance Ca(2+)-activated K(+) channels (K(Ca)) present in the endothelium of both species, and concentration-dependent vasodilation to bradykinin followed activation of these K(Ca) channels. Extensive electrical coupling was demonstrated between r-SMCs and l-SMCs, providing an additional pathway to facilitate the well-established myoendothelial coupling. Conducted dilation was still evident in a human RA-IMCA with poor myogenic tone, and heterocellular contacts were visible in the 3D reconstructed artery. Hyperpolarization and conducted vasodilation was also observed to adenosine which, in contrast to bradykinin, was sensitive to combined block of ATP-sensitive (K(ATP)) and inwardly rectifying (K(IR)) K(+) channels. CONCLUSIONS: These data extend our understanding of the mechanisms that coordinate human coronary microvascular blood flow and the mechanistic overlap with porcine IMCAs. The unusual presence of l-SMCs provides an additional pathway for rapid intercellular signaling between cells of the coronary artery wall. Local and conducted vasodilation follow hyperpolarization of the ECs or SMCs, and contact-coupling between l-SMCs and r-SMCs likely facilitates this vasodilation

    Pharmacological inhibitors of the cystic fibrosis transmembrane conductance regulator exert off-target effects on epithelial cation channels

    Get PDF
    The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αβγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δβγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes

    Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is an increasing drive to replace fish oil (FO) in finfish aquaculture diets with vegetable oils (VO), driven by the short supply of FO derived from wild fish stocks. However, little is known of the consequences for fish health after such substitution. The effect of dietary VO on hepatic gene expression, lipid composition and growth was determined in Atlantic salmon (<it>Salmo salar</it>), using a combination of cDNA microarray, lipid, and biochemical analysis. FO was replaced with VO, added to diets as rapeseed (RO), soybean (SO) or linseed (LO) oils.</p> <p>Results</p> <p>Dietary VO had no major effect on growth of the fish, but increased the whole fish protein contents and tended to decrease whole fish lipid content, thus increasing the protein:lipid ratio. Expression levels of genes of the highly unsaturated fatty acid (HUFA) and cholesterol biosynthetic pathways were increased in all vegetable oil diets as was SREBP2, a master transcriptional regulator of these pathways. Other genes whose expression was increased by feeding VO included those of NADPH generation, lipid transport, peroxisomal fatty acid oxidation, a marker of intracellular lipid accumulation, and protein and RNA processing. Consistent with these results, HUFA biosynthesis, hepatic β-oxidation activity and enzymic NADPH production were changed by VO, and there was a trend for increased hepatic lipid in LO and SO diets. Tissue cholesterol levels in VO fed fish were the same as animals fed FO, whereas fatty acid composition of the tissues largely reflected those of the diets and was marked by enrichment of 18 carbon fatty acids and reductions in 20 and 22 carbon HUFA.</p> <p>Conclusion</p> <p>This combined gene expression, compositional and metabolic study demonstrates that major lipid metabolic effects occur after replacing FO with VO in salmon diets. These effects are most likely mediated by SREBP2, which responds to reductions in dietary cholesterol. These changes are sufficient to maintain whole body cholesterol levels but not HUFA levels.</p

    Inhibition of inflammatory changes in human myometrial cells by cell penetrating peptide and small molecule inhibitors of NFκB

    Get PDF
    Complications arising from Preterm Birth are the leading causes of neonatal death globally. Current therapeutic strategies to prevent Preterm Birth are yet to demonstrate success in terms of reducing this neonatal disease burden. Upregulation of intracellular inflammatory pathways in uterine cells, including those involving nuclear factor kappa-B (NFκB), have been causally linked to both human term and preterm labor, but the barrier presented by the cell membrane presents an obstacle to interventions aimed at dampening these inflammatory responses. Cell penetrating peptides (CPPs) are novel vectors that can traverse cell membranes without the need for recognition by cell surface receptors and offer the ability to deliver therapeutic cargo internal to cell membranes. Using a human uterine cell culture inflammatory model, this study aimed to test the effectiveness of CPP-cargo delivery to inhibit inflammatory responses, comparing this effect with a small molecule inhibitor (Sc514) that has a similar intracellular target of action within the NFκB pathway (the IKK complex). The CPP Penetratin, conjugated to rhodamine, was able to enter uterine cells within a 60 min timeframe as assessed by live confocal microscopy, this phenomena was not observed with the use of a rhodamine-conjugated inert control peptide (GC(GS)4). Penetratin CPP conjugated to an IKK-inhibitory peptide (Pen-NBD) demonstrated ability to inhibit both the IL1β-induced expression of the inflammatory protein COX2 and dampen the expression of a bespoke array of inflammatory genes. Truncation of the CPP vector rendered the CPP-cargo conjugate much less effective, demonstrating the importance of careful vector selection. The small molecule inhibitor Sc514 also demonstrated ability to inhibit COX2 protein responses and a broad down-regulatory effect on uterine cell inflammatory gene expression. These results support the further exploration of either CPP-based or small molecular treatment strategies to dampen gestational cell inflammatory responses in the context of preterm birth. The work underlines both the importance of careful selection of CPP vector-cargo combinations and basic testing over a broad time and concentration range to ensure effective responses. Further work should demonstrate the effectiveness of CPP-linked cargos to dampen alternative pathways of inflammation linked to Preterm Birth such as MAP Kinase or AP

    Age-Gender Influence on the Rate-Corrected QT Interval and the QT-Heart Rate Relation in Families With Genotypically Characterized Long QT Syndrome

    Get PDF
    AbstractObjectives. We sought to analyze age-gender differences in the rate-corrected QT (QTc) interval in the presence of a QT-prolonging gene.Background. Compared with men, women exhibit a longer QTc interval and an increased propensity toward torsade de pointes. In normal subjects, the QTc gender difference reflects QTc interval shortening in men during adolescence.Methods. QTc intervals were analyzed according to age (<16 or ≥16 years) and gender in 460 genotyped blood relatives from families with long QT syndrome linked to chromosome 11p (KVLQT1; n = 199), 7q (HERG; n = 208) or 3p (SCN5A; n = 53).Results. The mean QTc interval in genotype-negative blood relatives (n = 240) was shortest in men, but similar among women, boys and girls. For genotype-positive blood relatives, men exhibited the shortest mean QTc interval in chromosome 7q- and 11p-linked blood relatives (n = 194), but not in the smaller 3p-linked group (n = 26). Among pooled 7q- and 11p-linked blood relatives, multiple regression analysis identified both genotype (p < 0.001) and age-gender group (men vs. women/children; p < 0.001) as significant predictors of the QTc interval; and heart rate (p < 0.001), genotype (p < 0.001) and age-gender group (p = 0.01) as significant predictors of the absolute QT interval. A shorter mean QT interval in men was most evident for heart rates <60 beats/min.Conclusions. In familial long QT syndrome linked to either chromosome 7q or 11p, men exhibit shorter mean QTc values than both women and children, for both genotype-positive and -negative blood relatives. Thus, adult gender differences in propensity toward torsade de pointes may reflect the relatively greater presence in men of a factor that blunts QT prolongation responses, especially at slow heart rates.(J Am Coll Cardiol 1997;29:93–9)
    • …
    corecore